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COMMENT 
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Absbact. The SU(m) symmetry underlying the degeneracies in the energy levels of the 
m-dimensional anisotropic oscillator with commensurate rrequencies discussed by Rosen- 
steel and Draayer. in the context of models for super-deiormed nuclei, is related to the 
non-bijective canonical transformation found by Moshinsky and his group. 

The quantum states of an anisotropic oscillator with commensurate frequencies (with 
o j = o / p ,  and pi integral and relatively prime), specified by quantum numbers Ini}, 
possessing energies 

are degenerate to the extent that the same energy value can be obtained with more than 
one integer set {q} . The anisotropic harmonic oscillator has long been of relevance in 
defining the intrinsic states of rotating deformed nuclei in the Nilsson model [I], but 
the recently discovered super-deformed high-spin states [2], corresponding to spheroidal 
nuclear shapes of approximately commensurate axial lengths brings such systems into 
focus. In particular the symmetry algebra behind the degeneracies has been clarified [3- 
61, leading to the result that an m-dimensional anisotropic oscillator with commensurate 
frequencies enjoys an underlying SU(ni) symmetry, as for the isotropic case but with 
the important difference that unlike the latter a given representation occurs not singly 
but with a multiplicity n i p j .  In the present note we comment on this symmetry vis Ci 
vis a non-bijective canonical transformation. 

In a series of papers Moshinsky and his group [7-141 have studied transformations 
of coordinates (4 )  and momentum ( p )  variables, defined implicitly through functional 
relations 

H(q,p) =n(%jj) and G(q,p)=&p) (1) 

{ K  GIqa= (2) 

the canonicity of which stand guaranteed provided the necessary and sufficient condition 

is satisfied with the braces denoting the corresponding Poisson brackets 
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Consider now the Hamiltonian for the anisotropic oscillator under consideration 

where the mass parameter has been put equal to unity. In order to uncover the underly- 
ing symmetry a non-bijective implicitly defined canonical transformation will be per- 
formed so as to reduce all the frequencies to W. It is convenient to carry out this 
operation in two steps: first, a point transformation which is merely a scaling (or 
dilatation) 

(4) 
1 

qi-iq;=-qi with p i - + p I = f i p i  
Ji;; 

whereupon the Hamiltonian becomes 

and, secondly, by a transformation implemented implicitly through 

That the transformation is indeed canonical is readily verified by observing that the 
condition given by equation (2) is satisfied. Thus the Hamiltonian now becomes 

- 
H(qj ,p;)  = H(qi ,p i )  = 4~1 (A+ CO’$). (7) 

i 

(It may parenthetically be remarked that the transformation considered would untwist 
the Lissajous figures (corresponding to classical orbits in space for the two-dimensional 
case) into ellipses characteristic of superpositions of simple harmonic motions with the 
same frequency.) The transmutation from anisotropy to isotropy has been achieved at 
the cost of introducing a foliated (multi-sheeted) structure of the phase space. Thus the 
(wqj/p,,p,)-plane gets mapped into p i  sheets in the (oli,rS,) variables. Introducing 
polar angles B j  and gi to represent corresponding points in the two planes, it may be 
easily recognized that by virtue of the transformation one has gi=piBi and thus a set 
of points, p i  in number, located at t l i+2nsi/pi  (si=O, . . . , p i -  1) in the original plane 
get mapped to the same polar angle (modulo 2n) but lying on pi  sheets. These pi 
points are connected by a group of linear canonical transformations isomorphic to the 
cyclic group Zp,. Returning to the mapped Hamillonian, the underlying symmetry is 
made manifest by observing that the J J T ( J W -  1)/2 angular momenta 

and the rii(!nf 1)/2- 1 ‘quadrupolar’ bilinears 
- ei, = w2qiqi +pipi= f l  f i  COS( pjej  - p i e i )  
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(discounting Xi 0 , , = 2  Xi 6,=2B), constitute all together nt2- I constants of motion that 
generate the symmetry group SU(in) under Poisson bracket operation (their Poisson 
bracket with vanishes). Furthermore, it is natural to introduce variables 

with 

in terms of which the constants of motion assume the form 

Ev=2 Im(A:Aj) and ali=2o Re(AfAj). 

The foregoing analysis permits a somewhat deeper understanding of the procedure 
adopted by Rosensteel and Drayer [6] wherein the 'phase operator' is introduced via 

(9) 
with fij=lik being as usual the number operator expressed in terms of the creation 
annihilation operators, and thence they define 

d T  = fi; I / 2  A t  and a ^ . = a ^ , p / 2 -  , , , -(n<+I)-%; ai 

r 7112 

the parallelism of which with equation (8) is immediately evident. However. here 
[&/pi] is the number operator modulo p, whose eigenvalue [n;/p,] would be the ?hole 
integral part of the ratio ni/p,. This is necessitated by the fact that otherwise A ; ( p j )  
and A^:(pj) would not have satisfied bosonic commutation relations. Moreover analo- 
gous to the constants of motion Eb and og defined above. symmetry operators 

CU=;i?(pi)Aj(PJ (11) 
may be introduced which constitute the generators of a U(m) symmetry which has been 
shown [6] to be the maximal symmetry algebra for the system. 
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