Symmetry in the commensurate anisotropic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 271401
(http://iopscience.iop.org/0305-4470/27/4/034)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:34

Please note that terms and conditions apply.

COMMENT

Symmetry in the commensurate anisotropic oscillator

Debajyoti Bhaumik, Ashok Chatterjee and Binayak Dutta-Roy
Saha Institute of Nuclear Physics, I/AF Bidhannagar, Calcutta 700 064, India

Received 5 July 1993

Abstract

The $S U(m)$ symmetry underlying the degeneracies in the energy levels of the m-dimensional anisotropic oscillator with commensurate frequencies discussed by Rosensteel and Draayer, in the context of models for super-deformed nuclei, is related to the non-bijective canonical transformation found by Moshinsky and his group.

The quantum states of an anisotropic oscillator with commensurate frequencies (with $\omega_{i}=\omega / \rho_{i}$ and ρ_{i} integral and relatively prime), specified by quantum numbers $\left\{n_{i}\right\}$, possessing energies

$$
E_{\left\{n_{j}\right\}}=\hbar \omega \sum_{i}\left(n_{i}+\frac{1}{2}\right) \frac{1}{\rho_{i}}
$$

are degenerate to the extent that the same energy value can be oblained with more than one integer set $\left\{n_{i}\right\}$. The anisotropic harmonic oscillator has long been of relevance in defining the intrinsic states of rotating deformed nuclei in the Nilsson model [1], but the recently discovered super-deformed high-spin states [2], corresponding to spheroidal nuclear shapes of approximately commensurate axial lengths brings such systems into focus. In particular the symmetry algebra behind the degeneracies has been clarified [36], leading to the result that an m-dimensional anisotropic oscillator with commensurate frequencies enjoys an underlying $S U(m)$ symmetry, as for the isotropic case but with the important difference that unlike the latter a given representation occurs not singly but with a multiplicity $\Pi_{i} \rho_{i}$. In the present note we comment on this symmetry vis \grave{a} vis a non-bijective canonical transformation.

In a series of papers Moshinsky and his group [7-14] have studied transformations of coordinates (q) and momentum (p) variables, defined implicitly through functional relations

$$
\begin{equation*}
H(q, p)=\bar{H}(\bar{q}, \bar{p}) \quad \text { and } \quad G(q, p)=\bar{G}(\bar{q}, \bar{p}) \tag{1}
\end{equation*}
$$

the canonicity of which stand guaranteed provided the necessary and sufficient condition

$$
\begin{equation*}
\{H, G\}_{q, p}=\{\bar{H}, \bar{G}\}_{\bar{q}, \bar{p}} \tag{2}
\end{equation*}
$$

is satisfied with the braces denoting the corresponding Poisson brackets

$$
\{H, G\}_{q, p}=\frac{\partial H}{\partial q} \frac{\partial G}{\partial p}-\frac{\partial H}{\partial p} \frac{\partial G}{\partial q} .
$$

Consider now the Hamiltonian for the anisotropic oscillator under consideration

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i=1}^{m}\left(p_{i}^{2}+\frac{\omega^{2}}{\rho_{i}^{2}} q_{i}^{2}\right) \equiv \sum_{i=1}^{m} h_{i} \tag{3}
\end{equation*}
$$

where the mass parameter has been put equal to unity. In order to uncover the underlying symmetry a non-bijective implicitly defined canonical transformation will be performed so as to reduce all the frequencies to ω. It is convenient to carry out this operation in two steps: first, a point transformation which is merely a scaling (or dilatation)

$$
\begin{equation*}
q_{i} \rightarrow q_{i}^{\prime}=\frac{1}{\sqrt{\rho_{i}}} q_{i} \quad \text { with } \quad p_{i} \rightarrow p_{i}^{\prime}=\sqrt{\rho_{i}} p_{i} \tag{4}
\end{equation*}
$$

whereupon the Hamiltonian becomes

$$
\begin{equation*}
H^{\prime}=\sum h_{i}^{\prime}=\sum_{i} \frac{1}{2 \rho_{i}}\left(p_{i}^{\prime 2}+\omega^{2} q_{i}^{\prime 2}\right) \tag{5}
\end{equation*}
$$

and, secondly, by a transformation implemented implicitly through

$$
\begin{align*}
& h_{i}^{\prime}\left(q_{i}^{\prime}, p_{i}^{\prime}\right) \equiv \frac{1}{2 \rho_{i}}\left(p_{i}^{\prime 2}+\omega^{2} q_{i}^{\prime 2}\right)=\frac{1}{2}\left(\bar{p}_{i}^{2}+\omega^{2} \bar{q}_{i}^{2}\right) \equiv \bar{h}_{i}\left(\bar{q}_{i}, \bar{p}_{i}\right) \tag{6a}\\
& g_{i}^{\prime}\left(q_{i}^{\prime}, p_{i}^{\prime}\right) \equiv \rho_{i} \tan ^{-1}\left(\frac{p_{i}^{\prime}}{\omega q_{i}^{\prime}}\right)=\tan ^{-1}\left(\frac{\bar{p}_{i}}{\omega \bar{q}_{i}}\right) \equiv \bar{g}_{i}\left(\bar{q}_{i}, \bar{p}_{i}\right) . \tag{6b}
\end{align*}
$$

That the transformation is indeed canonical is readily verified by observing that the condition given by equation (2) is satisfied. Thus the Hamiltonian now becomes

$$
\begin{equation*}
H\left(q_{i}, p_{i}\right)=\bar{H}\left(\bar{q}_{i}, \bar{p}_{i}\right)=\frac{1}{2} \sum_{i}\left(\bar{p}_{i}^{2}+\omega^{2} \bar{q}_{i}^{2}\right) . \tag{7}
\end{equation*}
$$

(It may parenthetically be remarked that the transformation considered would untwist the Lissajous figures (corresponding to classical orbits in space for the two-dimensional case) into ellipses characteristic of superpositions of simple harmonic motions with the same frequency.) The transmutation from anisotropy to isotropy has been achieved at the cost of introducing a foliated (multi-sheeted) structure of the phase space. Thus the ($\omega q_{i} / \rho_{i}, p_{i}$)-plane gets mapped into ρ_{i} sheets in the ($\omega \bar{q}_{i}, \bar{p}_{i}$) variables. Introducing polar angles θ_{i} and $\bar{\theta}_{i}$ to represent corresponding points in the two planes, it may be easily recognized that by virtue of the transformation one has $\bar{\theta}_{i}=\rho_{i} \theta_{i}$ and thus a set of points, ρ_{i} in number, located at $\theta_{i}+2 \pi s_{i} / \rho_{i}\left(s_{i}=0, \ldots, \rho_{i}-1\right)$ in the original plane get mapped to the same polar angle $\bar{\theta}_{i}$ (modulo 2π) but lying on ρ_{i} sheets. These ρ_{i} points are connected by a group of linear canonical transformations isomorphic to the cyclic group Z_{p}. Returning to the mapped Hamiltonian, the underlying symmetry is made manifest by observing that the $m(m-1) / 2$ angular momenta

$$
\tilde{L}_{i j} \equiv \bar{q}_{i} \bar{p}_{j}-\tilde{q}_{j} \bar{p}_{i}=\frac{\sqrt{2 \bar{h}_{i}} \sqrt{2 \bar{h}_{j}}}{\omega} \sin \left(\rho_{j} \theta_{j}-\rho_{i} \theta_{i}\right)
$$

and the $m(m+1) / 2-1$ 'quadrupolar' bilinears

$$
\bar{Q}_{i j} \equiv \omega^{2} \bar{q}_{i} \bar{q}_{j}+\bar{p}_{i} \bar{p}_{j}=\sqrt{2 \bar{h}_{i}} \sqrt{2 \overline{\bar{h}}_{j}} \cos \left(\rho_{j} \theta_{j}-\rho_{i} \theta_{i}\right)
$$

(discounting $\Sigma_{i} \bar{Q}_{n}=2 \Sigma_{i} \bar{h}_{i}=2 \bar{H}$), constitute all together $m^{2}-1$ constants of motion that generate the symmetry group $S U(m)$ under Poisson bracket operation (their Poisson bracket with \bar{H} vanishes). Furthermore, it is natural to introduce variables

$$
\begin{equation*}
A_{i}=\frac{1}{\sqrt{2 \omega}}\left(\mathrm{i} \bar{p}_{t}+\omega \bar{q}_{i}\right)=\sqrt{\frac{\tilde{h}_{i}}{\omega}} \mathrm{e}^{\mathrm{i} p_{i} \theta_{i}}=\sqrt{\frac{\left|a_{i}\right|^{2}}{\rho_{i}}}\left(\frac{a_{i}}{\sqrt{\left|a_{1}\right|^{2}}}\right)^{p_{i}} \tag{8}
\end{equation*}
$$

with

$$
a_{i} \equiv \sqrt{\frac{\rho_{i}}{2 \omega}}\left(\mathrm{i} p_{i}+\frac{\omega}{\rho_{i}} q_{i}\right)
$$

in terms of which the constants of motion assume the form

$$
\bar{L}_{i j}=2 \operatorname{Im}\left(A_{i}^{*} A_{j}\right) \quad \text { and } \quad \bar{Q}_{i j}=2 \omega \operatorname{Re}\left(A_{i}^{*} A_{j}\right) .
$$

The foregoing analysis permits a somewhat deeper understanding of the procedure adopted by Rosensteel and Drayer [6] wherein the 'phase operator' is introduced via

$$
\begin{equation*}
\hat{\alpha}_{t}^{\dagger}=\hat{n}_{i}^{-1 / 2} \hat{a}_{i}^{\dagger} \quad \text { and } \quad \hat{\alpha}_{i}=\hat{a}_{i} \hat{n}_{i}^{-1 / 2}=\left(\hat{n}_{2}+1\right)^{-1 / 2} \hat{a}_{i} \tag{9}
\end{equation*}
$$

with $\hat{n}_{i}=\hat{a}_{i}^{\dagger} \hat{a}_{i}$ being as usual the number operator expressed in terms of the creation annihilation operators, and thence they define

$$
\begin{equation*}
\hat{A}_{i}^{\dagger}\left(\rho_{i}\right) \equiv\left[\frac{\hat{n}_{i}}{\rho_{i}}\right]^{1 / 2}\left(\hat{\alpha}^{\dagger}\right)^{\rho_{i}} \tag{10}
\end{equation*}
$$

the parallelism of which with equation (8) is immediately evident. However, here [\hat{n}_{i} / ρ_{i}] is the number operator modulo ρ_{t} whose eigenvalue $\left[n_{i} / \rho_{i}\right.$] would be the whole integral part of the ratio n_{i} / ρ_{r}. This is necessitated by the fact that otherwise $\hat{A}_{i}\left(\rho_{i}\right)$ and $\hat{A}_{i}^{\dagger}\left(\rho_{i}\right)$ would not have satisfied bosonic commutation relations. Moreover analogous to the constants of motion $\bar{L}_{i j}$ and $\bar{Q}_{i j}$ defined above, symmetry operators

$$
\begin{equation*}
C_{i j} \equiv \hat{A}_{i}^{\dagger}\left(\rho_{i}\right) \hat{A}_{j}\left(\rho_{j}\right) \tag{11}
\end{equation*}
$$

may be introduced which constitute the generators of a $U(m)$ symmetry which has been shown [6] to be the maximal symmetry algebra for the system.

References

[1] Nilsson S G 1955 Mat. Fys. Medd. Dan. Vid. Selsk. 29
[2] Stephens F S 1990 Phys. Rev. Lett. 64 2623; 65301
[3] Jauch J M and Hill E L 1940 Phys. Rev. 57641
[4] Demkov Yu F 1963 Sov. Phys.-JETP 171349
[5] Louck J D, Moshinsky M and Wolf K B [973 J. Math. Phys. 14692
[6] Rosensteel G and Draayer J P 1989 J. Phys. A: Math. Gen. 221323
[7] Mello P A and Moshinsky M 1975 J. Math. Phys. 162017
[8] Kramers P, Moshinsky M and Seligman T H 1978 J. Math. Phys. 19683
[9] Moshinsky M and Seligman T H 1978 Ann. Phys., NY 114243
[10] Moshinsky M and Seligman T H 1979 Ann. Phys., NY 120402
[11] Moshinsky M and Seligman T H 1981 J. Math. Phys. 221338
[12] Plebanski J F and Seligman T H 1980 Rep. Math. Phys. 17437
[13] Dirl R. Kasperkovitz P and Moshinsky M 1988 J. Phys. A. Math. Gen. 211835
[14] Luis A and Sanchez-Sota L L 1991 J. Phys. A: Math. Gen. 242083

